Multiple feature sets and genetic search based discrimination of pathological voices
نویسندگان
چکیده
The effectiveness of ten different feature sets in classification of voice recordings of the sustained phonation of the vowel sound /a/ into a healthy and pathological classes is investigated as well as a new approach to building a sequential committee of support vector machines (SVM) for the classification is proposed. The optimal values of hyper-parameters of the committee and the feature sets providing the best performance are found during the genetic search. In the experimental investigations performed using 444 voice recordings of the sustained phonation of the vowel sound /a/ coming from 148 subjects, three recordings from each subject, the correct classification rate of over 92% was obtained. The classification accuracy has been compared with the accuracy obtained from four human experts. Keywords— voice pathology; feature selection; genetic search; support vector machine
منابع مشابه
Feature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach
Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملA Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)
Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...
متن کاملSupport vector wavelet adaptation for pathological voice assessment
The presence of abnormalities in the vocal system affects the quality of the voice and changes its characteristics. Digital analysis of pathological voices can be an effective and non-invasive tool for the detection of such alterations. This paper proposes a wavelet-based method to distinguish between normal and disordered voices. Wavelet filter banks are used in conjunction with support vector...
متن کاملFUZZY GRAVITATIONAL SEARCH ALGORITHM AN APPROACH FOR DATA MINING
The concept of intelligently controlling the search process of gravitational search algorithm (GSA) is introduced to develop a novel data mining technique. The proposed method is called fuzzy GSA miner (FGSA-miner). At first a fuzzy controller is designed for adaptively controlling the gravitational coefficient and the number of effective objects, as two important parameters which play major ro...
متن کامل